Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 75 of 171 results
Background
51.

Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro.

red Phytochromes Background
Photochem Photobiol, 21 Jul 2017 DOI: 10.1111/php.12793 Link to full text
Abstract: The dynamic behavior of the plant red/far-red light photoreceptor phytochrome B (phyB) has been elucidated in natural and synthetic systems. Red light switches phyB from the inactive Pr state to the active Pfr state, a process that is reversed by far-red light. Alongside light signals, phyB activity is constrained by thermal reversion (that is prominent in the dark) and protein-protein interactions between phyB, other phytochrome molecules, and, among others, PHYTOCHROME INTERACTING FACTORs (PIFs). Requirements for phyB-PIF association have been well studied and are central to light-regulated synthetic tools. However, it is unknown whether PIF interactions influence transitions of phyB between different conformers. Here, we show that the in vitro thermal reversion of phyB involves multiple reactions. Thermal reversion of phyB in vitro is inhibited by PIF6, and this effect is observed at all temperatures tested. We analyzed our experimental data using a mathematical model containing multiple Pfr conformers, in accordance with previous findings. Remarkably, each Pfr conformer is differentially regulated by PIF6 and temperature. As a result, we speculate that in vivo phytochrome signaling networks may require similar levels of complexity to fine-tune responses to the external environment.
52.

Hydrogen Bonding Environment of the N3-H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins.

blue LOV domains Background
Biochemistry, 5 Jun 2017 DOI: 10.1021/acs.biochem.7b00057 Link to full text
Abstract: The light oxygen voltage (LOV) domain is a flavin-binding blue-light receptor domain, originally found in a plant photoreceptor phototropin (phot). Recently, LOV domains have been used in optogenetics as the photosensory domain of fusion proteins. Therefore, it is important to understand how LOV domains exhibit light-induced structural changes for the kinase domain regulation, which enables the design of LOV-containing optogenetics tools with higher photoactivation efficiency. In this study, the hydrogen bonding environment of the N3-H group of flavin mononucleotide (FMN) of the LOV2 domain from Adiantum neochrome (neo) 1 was investigated by low-temperature Fourier transform infrared spectroscopy. Using specifically (15)N-labeled FMN, [1,3-(15)N2]FMN, the N3-H stretch was identified at 2831 cm(-1) for the unphotolyzed state at 150 K, indicating that the N3-H group forms a fairly strong hydrogen bond. The N3-H stretch showed temperature dependence, with a shift to lower frequencies at ≤200 K and to higher frequencies at ≥250 K from the unphotolyzed to the intermediate states. Similar trends were observed in the LOV2 domains from Arabidopsis phot1 and phot2. By contrast, the N3-H stretch of the Q1029L mutant of neo1-LOV2 and neo1-LOV1 was not temperature dependent in the intermediate state. These results seemed correlated with our previous finding that the LOV2 domains show the structural changes in the β-sheet region and/or the adjacent Jα helix of LOV2 domain, but that such structural changes do not take place in the Q1029L mutant or neo1-LOV1 domain. The environment around the N3-H group was also investigated.
53.

Time-Resolved X-Ray Solution Scattering Reveals the Structural Photoactivation of a Light-Oxygen-Voltage Photoreceptor.

blue LOV domains Background
Structure, 8 May 2017 DOI: 10.1016/j.str.2017.04.006 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings. There is a gap of knowledge on how this initial signal is relayed further through the sensor to the effector module. To characterize these conformational changes, we apply time-resolved X-ray scattering to the homodimeric LOV domain from Bacillus subtilis YtvA. We observe a global structural change in the LOV dimer synchronous with the formation of the chromophore photoproduct state. Using molecular modeling, this change is identified as splaying apart and relative rotation of the two monomers, which leads to an increased separation at the anchoring site of the effector modules.
54.

Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.

violet Cyanobacteriochromes Background
Photochem Photobiol, May 2017 DOI: 10.1111/php.12732 Link to full text
Abstract: Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.
55.

Seeing the light with BLUF proteins.

blue BLUF domains Background
Biophys Rev, 24 Mar 2017 DOI: 10.1007/s12551-017-0258-6 Link to full text
Abstract: First described about 15 years ago, BLUF (Blue Light Using Flavin) domains are light-triggered switches that control enzyme activity or gene expression in response to blue light, remaining activated for seconds or even minutes after stimulation. The conserved, ferredoxin-like fold holds a flavin chromophore that captures the light and somehow triggers downstream events. BLUF proteins are found in both prokaryotes and eukaryotes and have a variety of architectures and oligomeric forms, but the BLUF domain itself seems to have a well-preserved structure and mechanism that have been the focus of intense study for a number of years. Crystallographic and NMR structures of BLUF domains have been solved, but the conflicting models have led to considerable debate about the atomic details of photo-activation. Advanced spectroscopic and computational methods have been used to analyse the early events after photon absorption, but these too have led to widely differing conclusions. New structural models are improving our understanding of the details of the mechanism and may lead to novel tailor-made tools for optogenetics.
56.

Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase.

blue BLUF domains Background
J Mol Biol, 21 Mar 2017 DOI: 10.1016/j.jmb.2017.03.020 Link to full text
Abstract: Light-regulated enzymes enable organisms to quickly respond to changing light conditions. We characterize a photoactivatable adenylyl cyclase (AC) from Beggiatoa sp. (bPAC) that translates a blue light signal into the production of the second messenger cyclic AMP. bPAC contains a BLUF photoreceptor domain that senses blue light using a flavin chromophore, linked to an AC domain. We present a dark state crystal structure of bPAC that closely resembles the recently published structure of the homologous OaPAC from Oscillatoria acuminata. To elucidate the structural mechanism of light-dependent AC activation by the BLUF domain, we determined the crystal structures of illuminated bPAC and of a pseudo-lit state variant. We use hydrogen-deuterium exchange measurements of secondary structure dynamics and hypothesis-driven point mutations to trace the activation pathway from the chromophore in the BLUF domain to the active site of the cyclase. The structural changes are relayed from the residues interacting with the excited chromophore through a conserved kink of the BLUF β-sheet to a tongue-like extrusion of the AC domain that regulates active site opening and repositions catalytic residues. Our findings not only show the specific molecular pathway of photoactivation in BLUF-regulated ACs but also have implications for the general understanding of signaling in BLUF domains and of the activation of ACs.
57.

Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins.

blue LOV domains Background
J Phys Chem B, 16 Mar 2017 DOI: 10.1021/acs.jpcb.7b00561 Link to full text
Abstract: Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O2(a(1)Δg). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of (3)FMN by ground state oxygen, O2(X(3)Σg(-)), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O2(a(1)Δg) formation for both SOPP and miniSOG. We also show that the quantum yields of O2(a(1)Δg) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O2(X(3)Σg(-)). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.
58.

Glutamine Amide Flip Elicits Long Distance Allosteric Responses in the LOV Protein Vivid.

blue LOV domains Background
J Am Chem Soc, 1 Feb 2017 DOI: 10.1021/jacs.6b10701 Link to full text
Abstract: Light-oxygen-voltage (LOV) domains sense blue light through the photochemical formation of a cysteinyl-flavin covalent adduct. Concurrent protonation at the flavin N5 position alters the hydrogen bonding interactions of an invariant Gln residue that has been proposed to flip its amide side chain as a critical step in the propagation of conformational change. Traditional molecular dynamics (MD) and replica-exchange MD (REMD) simulations of the well-characterized LOV protein Vivid (VVD) demonstrate that the Gln182 amide indeed reorients by ∼180° in response to either adduct formation or reduction of the isoalloxazine ring to the neutral semiquinone, both of which involve N5 protonation. Free energy simulations reveal that the relative free energies of the flipped Gln conformation and the flipping barrier are significantly lower in the light-adapted state. The Gln182 flip stabilizes an important hinge-bβ region between the PAS β-sheet and the N-terminal cap helix that in turn destabilizes an N-terminal latch region against the PAS core. Release of the latch, observed both experimentally and in the simulations, is known to mediate light-induced VVD dimerization. This computational study of a LOV protein, unprecedented in its agreement with experiment, provides an atomistic view of long-range allosteric coupling in a photoreceptor.
59.

Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain.

blue LOV domains Background
J Phys Chem B, 25 Jan 2017 DOI: 10.1021/acs.jpcb.7b00088 Link to full text
Abstract: The rational engineering of photosensor proteins underpins the field of optogenetics, in which light is used for spatiotemporal control of cell signaling. Optogenetic elements function by converting electronic excitation of an embedded chromophore into structural changes on the microseconds to seconds time scale, which then modulate the activity of output domains responsible for biological signaling. Using time-resolved vibrational spectroscopy coupled with isotope labeling, we have mapped the structural evolution of the LOV2 domain of the flavin binding phototropin Avena sativa (AsLOV2) over 10 decades of time, reporting structural dynamics between 100 fs and 1 ms after optical excitation. The transient vibrational spectra contain contributions from both the flavin chromophore and the surrounding protein matrix. These contributions are resolved and assigned through the study of four different isotopically labeled samples. High signal-to-noise data permit the detailed analysis of kinetics associated with the light activated structural evolution. A pathway for the photocycle consistent with the data is proposed. The earliest events occur in the flavin binding pocket, where a subpicosecond perturbation of the protein matrix occurs. In this perturbed environment, the previously characterized reaction between triplet state isoalloxazine and an adjacent cysteine leads to formation of the adduct state; this step is shown to exhibit dispersive kinetics. This reaction promotes coupling of the optical excitation to successive time-dependent structural changes, initially in the β-sheet and then α-helix regions of the AsLOV2 domain, which ultimately gives rise to Jα-helix unfolding, yielding the signaling state. This model is tested through point mutagenesis, elucidating in particular the key mediating role played by Q513.
60.

Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.

blue LOV domains Background
J Phys Chem Lett, 22 Aug 2016 DOI: 10.1021/acs.jpclett.6b01484 Link to full text
Abstract: Light-triggered reactions of biological photoreceptors have gained immense attention for their role as molecular switches in their native organisms and for optogenetic application. The light, oxygen, and voltage 2 (LOV2) sensing domain of plant phototropin binds a C-terminal Jα helix that is docked on a β-sheet and unfolds upon light absorption by the flavin mononucleotide (FMN) chromophore. In this work, the signal transduction pathway of LOV2 from Avena sativa was investigated using time-resolved infrared spectroscopy from picoseconds to microseconds. In D2O buffer, FMN singlet-to-triplet conversion occurs in 2 ns and formation of the covalent cysteinyl-FMN adduct in 10 μs. We observe a two-step unfolding of the Jα helix: The first phase occurs concomitantly with Cys-FMN covalent adduct formation in 10 μs, along with hydrogen-bond rupture of the FMN C4═O with Gln-513, motion of the β-sheet, and an additional helical element. The second phase occurs in approximately 240 μs. The final spectrum at 500 μs is essentially identical to the steady-state light-minus-dark Fourier transform infrared spectrum, indicating that Jα helix unfolding is complete on that time scale.
61.

Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

red Phytochromes Background
Nat Commun, 6 May 2016 DOI: 10.1038/ncomms11431 Link to full text
Abstract: Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.
62.

Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin.

green red Cyanobacteriochromes Background
Front Microbiol, 26 Apr 2016 DOI: 10.3389/fmicb.2016.00588 Link to full text
Abstract: Cyanobacteriochromes (CBCRs) are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB) and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV). The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2) from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.
63.

Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations.

cyan Fluorescent proteins Background
J Phys Chem B, 24 Mar 2016 DOI: 10.1021/acs.jpcb.6b01752 Link to full text
Abstract: Dronpa is a novel photochromic fluorescent protein that exhibits fast response to light. The present article is the first report of the resonance and preresonance Raman spectra of Dronpa. We used the intensity and frequency of Raman bands to determine the structure of the Dronpa chromophore in two thermally stable photochromic states. The acid-base equilibrium in one photochromic state was observed by spectroscopic pH titration. The Raman spectra revealed that the chromophore in this state shows a protonation/deprotonation transition with a pKa of 5.2 ± 0.3 and maintains the cis configuration. The observed resonance Raman bands showed that the other photochromic state of the chromophore is in a trans configuration. The results demonstrate that Raman bands selectively enhanced for the chromophore yield valuable information on the molecular structure of the chromophore in photochromic fluorescent proteins after careful elimination of the fluorescence background.
64.

Library-Aided Probing of Linker Determinants in Hybrid Photoreceptors.

blue LOV domains Background
ACS Synth Biol, 21 Mar 2016 DOI: 10.1021/acssynbio.6b00028 Link to full text
Abstract: Signaling proteins comprise interaction and effector modules connected by linkers. Throughout evolution, these recurring modules have multiply been recombined to produce the present-day plethora of signaling proteins. Likewise, modular recombination lends itself to the engineering of hybrid signal receptors, whose functionality hinges on linker topology, sequence, and length. Often, numerous linkers must be assessed to obtain functional receptors. To expedite linker optimization, we devised the PATCHY strategy (primer-aided truncation for the creation of hybrid proteins) for the facile construction of hybrid gene libraries with defined linker distributions. Empowered by PATCHY, we engineered photoreceptors whose signal response was governed by linker length: whereas blue-light-repressed variants possessed linkers of 7n or 7n+5 residues, variants with 7n+1 residues were blue-light-activated. Related natural receptors predominantly displayed linker lengths of 7n and 7n+5 residues but rarely of 7n+1 residues. PATCHY efficiently explores linker sequence space to yield functional hybrid proteins including variants transcending the natural repertoire of signaling proteins.
65.

Functional and topological diversity of LOV domain photoreceptors.

blue LOV domains Background
Proc Natl Acad Sci USA, 29 Feb 2016 DOI: 10.1073/pnas.1509428113 Link to full text
Abstract: Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.
66.

Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.

blue LOV domains Background
Elife, 12 Jan 2016 DOI: 10.7554/elife.11860 Link to full text
Abstract: The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics.
67.

Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

blue LOV domains Background
Nat Commun, 9 Dec 2015 DOI: 10.1038/ncomms10079 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.
68.

A critical element of the light-induced quaternary structural changes in YtvA-LOV.

blue LOV domains Background
Protein Sci, 10 Oct 2015 DOI: 10.1002/pro.2810 Link to full text
Abstract: YtvA, a photosensory LOV (light-oxygen-voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light-sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA-LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA-LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo-induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA-LOV than the local disruption of Jα helix in the As-LOV domain.
69.

Structural basis for gene regulation by a B12-dependent photoreceptor.

Cobalamin binding domains Background
Nature, 28 Sep 2015 DOI: 10.1038/nature14950 Link to full text
Abstract: Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation.
70.

Photo-dynamics of photoactivated adenylyl cyclase TpPAC from the spirochete bacterium Turneriella parva strain H(T).

blue BLUF domains Background
J Photochem Photobiol B, 2 Sep 2015 DOI: 10.1016/j.jphotobiol.2015.08.027 Link to full text
Abstract: The photoactivated adenylyl cyclase TpPAC from the spirochete bacterium Turneriella parva was synthesized and the purified recombinant protein was characterized by biochemical and optical spectroscopic methods. TpPAC consists of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and an adenylyl cyclase homology domain (CHD). A light induced cAMP cyclase activity of ≈ 53.3 nmolmg(-1)min(-1) was measured while in the dark the cyclase activity was approximately a factor of 240 lower. The photo-cycling dynamics of the BLUF domain of TpPAC was studied by absorption spectra, fluorescence quantum distribution, and fluorescence lifetime measurements. The quantum efficiency of BLUF domain signaling state formation was found to be ϕs ≈ 0.59. A three-component exponential recovery of the signaling state to the receptor state was observed with the time constants τrec,1 = 4.8s, τrec,2 = 34.2s, and τrec,3 = 293s at 21.3 °C. The protein thermal stability was studied by stepwise sample heating and cooling. An apparent TpPAC melting temperature of ϑm ≈ 46 °C was determined. The photo-degradation of TpPAC in the signaling state was studied by prolonged intense light exposure at 455 nm. An irreversible flavin photo-degradation was observed with quantum yield ϕD ≈ 8.7 × 10(-6).
71.

Ubiquitous Structural Signaling in Bacterial Phytochromes.

near-infrared Phytochromes Background
J Phys Chem Lett, 14 Aug 2015 DOI: 10.1021/acs.jpclett.5b01629 Link to full text
Abstract: The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
72.

How Does Photoreceptor UVR8 Perceive a UV-B Signal?

UV UV receptors Review Background
Photochem Photobiol, 11 Jun 2015 DOI: 10.1111/php.12470 Link to full text
Abstract: UVR8 is the only known plant photoreceptor that mediates light responses to UV-B (280-315 nm) of the solar spectrum. UVR8 perceives a UV-B signal via light-induced dimer dissociation, which triggers a wide range of cellular responses involved in photomorphogenesis and photoprotection. Two recent crystal structures of Arabidopsis thaliana UVR8 (AtUVR8) have revealed unusual clustering of UV-B-absorbing Trp pigments at the dimer interface and provided a structural framework for further mechanistic investigation. This review summarizes recent advances in spectroscopic, computational and crystallographic studies on UVR8 that are directed toward full understanding of UV-B perception at the molecular level.
73.

Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.

blue LOV domains Background
Biochemistry, 14 May 2015 DOI: 10.1021/acs.biochem.5b00320 Link to full text
Abstract: Aureochrome-1 (AUREO1) is a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. The AUREO1 protein contains a central basic region/leucine zipper (bZIP) domain, and a C-terminal light-oxygen-voltage-sensing (LOV) domain. BL induces the dimerization of monomeric AUREO1, which subsequently increases the affinity of this transcription factor for its target DNA [Hisatomi, O., et al. (2014) J. Biol. Chem. 289, 17379-17391]. We constructed a synthetic gene encoding N-terminally truncated monomeric AUREO1 (designated Photozipper) to elucidate the molecular mechanism of this BL-regulated transcription factor and to develop it as an optogenetic tool. In this study, four different Photozipper (PZ) protein constructs were prepared comprising different N-terminal truncations. The monomer-dimer equilibria of the PZ constructs were investigated in the dark and light states. Dynamic light scattering and size-exclusion chromatography analyses revealed that the apparent dissociation constants of PZ dimers with and without the ZIP region were ~100 and 30 μM, respectively, indicating that the ZIP region stabilized the monomeric form in the dark state. In the light state, fluorescence resonance energy transfer analyses demonstrated that deletion of the ZIP region increased the dissociation constant from ~0.15 to 0.6 μM, suggesting that intermolecular LOV-LOV and ZIP-ZIP interactions stabilized the dimeric forms. Our results suggest that synergistic interactions between the LOV and bZIP domains stabilize the monomeric form in the dark state and the dimeric form in the light state, which possibly contributes to the function of PZ as a BL-regulated molecular switch.
74.

Prohibitin 2: At a communications crossroads.

blue BLUF domains Background
IUBMB Life, 21 Apr 2015 DOI: 10.1016/j.chemphys.2011.05.028 Link to full text
Abstract: Prohibitins (PHBs) are a highly conserved class of proteins first discovered as inhibitors of cellular proliferation. Since then PHBs have been found to have a significant role in transcription, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism, placing these proteins among the key regulators of pathologies such as cancer, neuromuscular degeneration, and other metabolic diseases. The human genome encodes two PHB proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which function not only as a heterodimeric complex, but also independently. While many previous reviews have focused on the better characterized prohibitin, PHB1, this review focuses on PHB2 and new data concerning its cellular functions both in complex with PHB1 and independent of PHB1.
75.

Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.

UV UV receptors Background
Plant Cell, 27 Jan 2015 DOI: 10.1105/tpc.114.133868 Link to full text
Abstract: UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.
Submit a new publication to our database